

Spindle Probe

This presentation will give you step by step instructions on how to setup and (re)calibrate your spindle probe.

N320(CALIBRATE PROBE X-Y)
(SN= 201608090)
(MM= 38.1081)
(IN= 1.50031)
(D=EXACT DIAMETER OF RING)
(B=NOMINAL DIAMETER OF RUBY)
(U=OPTIMISE CALIBRATION 1=YES 0=NO)
G65P9901M102.V1.D1.50037B.07874U0.
M30

At the end of O8025 if the XY calibration has a U value, you have standard Supatouch

N340 (PROBE OPTIMIZATION)
(B=NOMINAL DIAMETER OF RUBY)
(A=DIRECTION POSITION)
G65P9901M110B.23622A1.

At the end of O8025 if the Optimization is a stand-alone cycle, you have <u>Supatouch.V2</u>

What Software do I have?

calibration uses G175, you have
Inspection Plus / Rengage

(CALIBRATE PROBE X-Y)

(SN= 201506093)

(MM= 38.16655)

(IN= 1.50262)

(D=DIAMETER OF RING)

(S=WORK OFFSET SET FOR CENTER POSITION)

G175D1.5S6

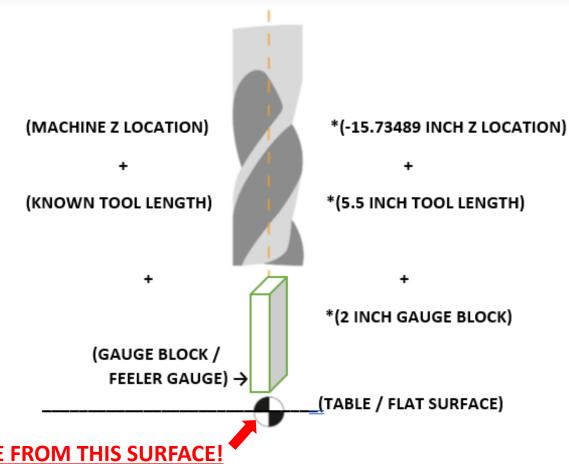
M30

At the end of O8025 if the XY

Table of Content:

•	Creating Z Work Offset	page!	5
•	Stylus runout	page	7
•	Supatouch:		
	XY Calibration	page	9
	Z Calibration	page :	10
	Supatouch Optimization	page	11
	Supatouch.V2 Optimization	page :	12
•	Inspection Plus / Rengage:		
	XY Calibration	page	14
	Z Calibration	page	15

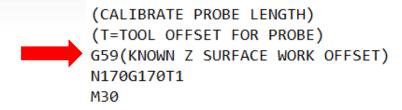
•	<u>Basi</u>	<u>: Maintenance</u> :		
	•	Changing Batteries	page	16
	•	Changing Stylus	page	18
•	Basic	Troubleshooting	page	19


*PQI SUGGESTS ALWAYS
CALIBRATING XY BEFORE Z*

Create Z Work Offset

We must create an initial Z work offset in order to properly run probe length calibration.

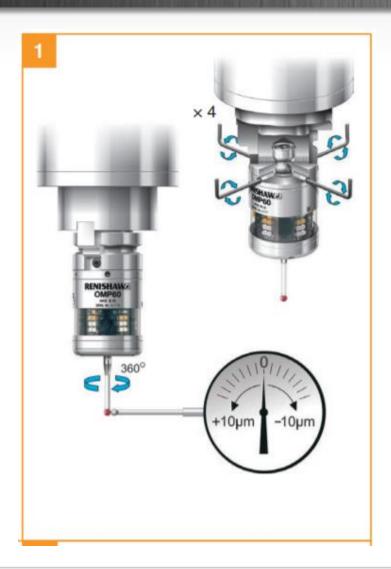
- Using:
 - Tool of known length
 - Feeler gauge / gauge block of known size
- Find a flat perpendicular surface to your Z axis
- Be sure applicable axis is not skewed
- Manually touch off your 'feeler gauge' so it has just enough contact between your tool and surface that your feeler gauge can move but not bounce around
 - *you can also just use a known Z location in your machine if you have one
- Now that we have touched off the tool do not move the machine Z axis
- We now must create a Z work offset using our known values


CALIBRATE FROM THIS SURFAC

(REMOVE GAGEBLOCK / FEELER GAGE WHEN **CALIBRATING Z)**

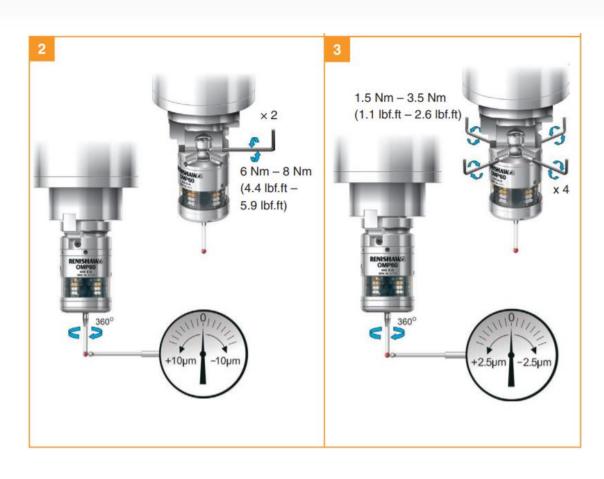
Example:

- Z machine location = -15.73489 inch
- Tool length = 5.5 inch
- Feeler gauge = 2 inch gauge block
- We need to select a work offset to set... don't overwrite important existing offset numbers!
- G54 Z location
- Add all 3 known numbers together
- (-15.73489)+(-5.5)+(-2.0)=(-23.23489)
 - *Depending on machine control type you may have to add the values differently, as to make your numbers always more negative
- Be sure to calculate in appropriate machine units
- Our new Z position in G54 is -23.23489 (inch) this is the number that the Z calibration cycle will use to calculate the new probe length
- Be sure you change the offset callout from the length calibration program to match this offset!
- Calibrate directly on your Z-zero known surface! (remove gage block or feeler gage when calibrating)

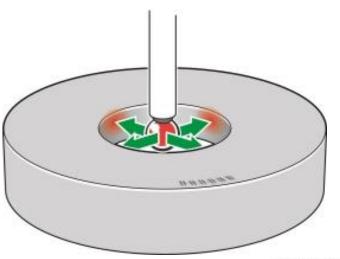

Inspection Plus / Rengage

Supatouch

N330 (CALIBRATE PROBE LENGTH)
(B=NOMINAL DIAMETER OF RUBY)
(T=TOOL OFFSET FOR KNOWN TOOL)
(Z=REFERANCE SURFACE POSITION)
G54 (KNOWN Z WORK OFFSET)
G65P9901M104Z0.B.07874
M30


Stylus Runout

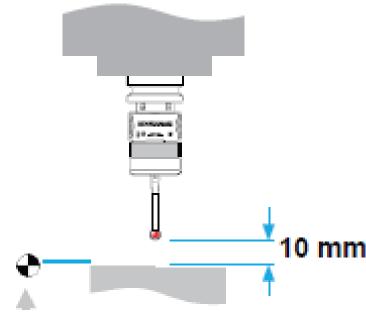
- Any time you **break** or **replace** a stylus, you must redo your runout.
- Some ways of achieving this are with a dial indicator or a tool pre-setter.
 - Parlec, Zoller, Sperroni, etc.
- Per Renishaw Specification keep the runout below +/- .010 mm (.0004 in)
 - Ideally keep it below +/- .0025 mm (.0001 in)
 - The closer to zero the better


- The 2 screw holes nearest the tool holder are pointed set screws and hold the Probe into the Tool Holder, these must remain tight.
 - (Figure 2)
- The 4 screw holes nearest the Probe body are your XY Runout adjustment screws. (they may be ON the probe body)
 - (Figure 3)
- Rotate and make small adjustment to (4) adjustment screws every 180°
 - similar like how you would use a 'Four Jaw Chuck'
- When you get an acceptable number, make sure all screws are tight
 - no need to overtighten

Supatouch XY Calibration

- This cycle is in program O8025 line N320
 - Or MDI Template Programs
- Ensure the D (exact diameter of feature) and B (nominal diameter of Stylus ruby) values are correct and in machine units
- Manually drive the spindle probe roughly centered into your calibration ring or feature, making sure the ruby is fully inside
- Run the cycle
- If your probe macro variables start at 540 (standard)
 - Stylus X runout is in 542
 - Stylus Y runout is in 543
 - All Supatouch calibration data is in Metric

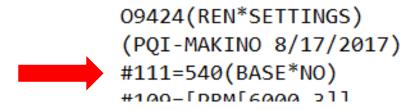
N320 (CALIBRATE PROBE X-Y)
(SN= 201608090)
(MM= 38.1081)
(IN= 1.50031)
(D=EXACT DIAMETER OF RING)
(B=NOMINAL DIAMETER OF RUBY)
G65P9901M102.V1.D1.50037B.07874
M30



Supatouch Z Calibration

- This cycle is in program O8025 line N330
 - Or MDI Template Programs
- Ensure that the T (Tool number if not using H1 style tool offsets) and B (nominal diameter of Stylus ruby) values are correct and in machine units
- Manually drive the probe about half an inch above the point you touched off your tool
 - be sure applicable axis are at not at a skewed angle
- Don't forget to match the programs work offset callout to the one you set
- Run the cycle
 - This will update probe length in 3 spots
 - Tool data
 - Tool offset (T number in program)
 - Macro variable for probe calibration

N330 (CALIBRATE PROBE LENGTH)
(B=NOMINAL DIAMETER OF RUBY)
(T=TOOL OFFSET FOR KNOWN TOOL)
(Z=REFERANCE SURFACE POSITION)
G54 (KNOWN Z WORK OFFSET)
G65P9901M104Z0.B.07874
M30

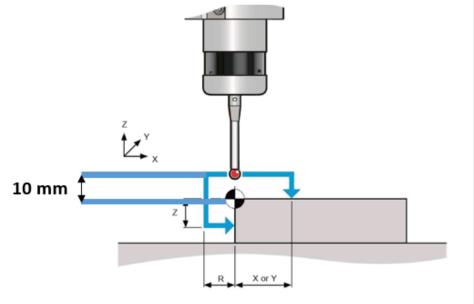


If Z moves positive and alarms when cycle starts, the active Fanuc Offset Length may be longer than actual length. Zero out offset and run again

Standard Supatouch Probe Optimization(not required)

- Optimization only suggested to be run:
 - During initial probe setup
 - After drastically changing stylus length / ruby size
 - After probe body crash
 - After major machine service
- To reoptimize the spindle probe, delete Macro Variable #545 (assuming standard base number for calibration data)
 - You can check where the base number is by looking in O9424
- If you delete Variable #545, you MUST calibrate XY then Z on the probe
 - It will now force the Optimization cycle
 - The XY cycle will touch 40 times in X
 - Then the Z cycle will do 40 touches during Z Calibration
 - It does this at different feed rates to tell the probe the optimum feeds / speeds to move and take measurements in XYZ

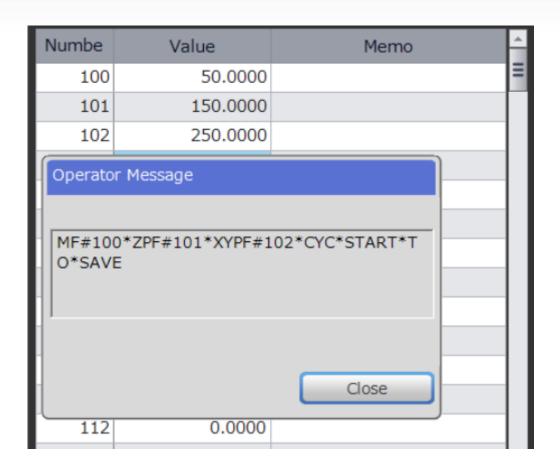
Supatouch.V2 Probe Optimization(not required)


- This stand-alone cycle is in program O8025 line N340 in the newest Supatouch Software
 - Or MDI Template Programs
- Optimization only suggested to be run:
 - During initial probe setup
 - After drastically changing stylus length / ruby size
 - After probe body crash
 - After major machine service
 - If you run probe optimization, you MUST calibrate XY and Z on the probe
- You can change the 'A' value to change what direction the probe will take its point in either X or Y
 - Start about half an inch above the edge of a 90° corner
 - You do not need to have a calibrated probe to run this cycle
- The XY cycle will touch 40 times, the direction is specified by the 'A' value
- Then the Z cycle will do 40 touches in Z
 - It does this at different feed rates to tell the probe the optimum feeds / speeds to move and take measurements in XYZ

N340 (PROBE OPTIMIZATION) (B=NOMINAL DIAMETER OF RUBY)

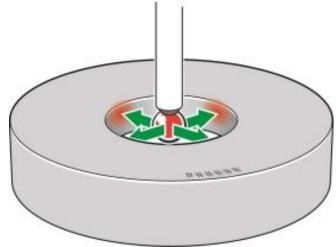
(A=DIRECTION POSITION) G65P9901M110B.23622A1.

*<u>Note</u>


- A1. = Axis 1 positive (X+)
- A-1. = Axis 1 negative (X-)
- A2. = Axis 2 positive (Y+)
- A-2. = Axis 2 negative (Y-)

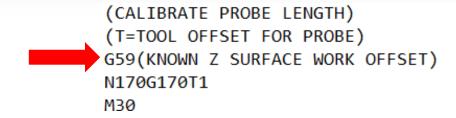
Supatouch.V2 Probe Optimization (Continued)

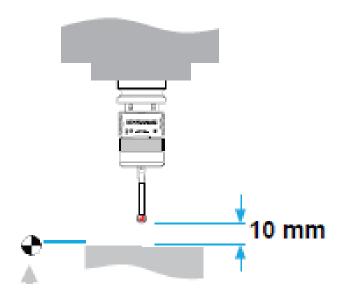
- When prompted check #100 #102
 - While in "input mode" you may manually lower the values below if you want to slow down probe movement speeds in the specified axis, however, <u>do not</u> increase the predetermined values.
 - If you are satisfied with the pre-determined values, hit cycle start twice then fully recalibrate your probe.
 - MF#100 = Measure Feedrate
 - Maximum permissible measuring feedrate (machine units)
 - If this number is set below your current software's minimal single touch speed (about 30-40 inch per min), then your probe measurements will default to 2 touch probing. This is Okay!
 - ZPF#101 = Z position Feedrate
 - Maximum permissible Z-axis positioning feedrate (machine units)
 - XYPF#102 = XY Position Feedrate
 - Maximum permissible X or Y-axis positioning feedrate (machine units)
- When you are satisfied with the values in #100-#102, hit cycle-start. Then
 you will be prompted to calibrate XY and Z on the probe, hit cycle-start to
 end the optimization program.
- At this point you MUST calibrate XY and Z to be able to use your spindle probe.



Inspection Plus / Rengage XY Calibration

- This cycle is at the end of program O8025
- Ensure that the D (exact diameter of feature) and S (work offset for center position) values are correct and in machine units
 - S value will update an XY position for center of the ring / feature, to your specified offset
- Manually drive the spindle probe roughly centered into your calibration ring or feature, making sure the ruby is fully inside
- Run the cycle


(CALIBRATE PROBE X-Y)
(SN= 201506093)
(MM= 38.16655)
(IN= 1.50262)
(D=DIAMETER OF RING)
(S=WORK OFFSET SET FOR CENTER POSITION)
G175D1.5S6
M30



Inspection Plus / Rengage Z Calibration

- This cycle is at the end of program O8025
- Ensure that the T (Tool number of probe) value is correct
- Manually drive the probe about half an inch above the point you touched off your tool
 - be sure applicable axis are at a skewed angle
- Don't forget to match the programs work offset callout to the one you set
- Run the cycle
 - This will update probe length in 3 spots
 - Tool data
 - Tool offset (T number in program)
 - Macro variable for probe calibration

Batteries

- DO NOT buy cheap batteries, it will affect probe potential runtime.
 - Consult your small Renishaw (probe specific) manual for best batteries to use.
- After changing the battery it is **not** required to recalibrate the probe.
 - All calibration information is stored in the machine control
- After the new batteries are in the probe **don't** deflect the stylus. Let the LEDs complete their light cycle.
 - This short light cycle is the settings inside the probe.
 - The lights will Blink Green at the end if you put acceptable batteries in.

Renishaw suggested batteries

OMP40

Ecocel: TC-4511, TC-4521, TC-4531 Saft: LS 14250 C,

LS 14250

Sonnenschein: SL-750

Xeno: XL-050F

Dubilier: SB-AA02 Maxell: ER3S Sanyo: CR 14250 SE

Sonnenschein: SL-350, SL-550 Tadiran: TL-4902 TL-5902, TL-2150,

TL-5101

Varta: CR 1/2 AA

RMP60

Battery types					
Alkaline x2	Lithium Thionyl Chloride x2		Nickel Cadmium/Nickel Metal Hydride x2		
AA 1.5 V	Saft:	LS 14500	AA 1.2 V		
_	Sonnenschein:	SL-760/S			
	Tadiran:	TL-5903/S, TL-2100/S	♥		
•	Xeno:	XL-060F			

<u>RMP600</u>

Battery types				
Alkaline Lithium-thionyl chloride		Nickel Cadmium / Nickel Metal Hydride		
× 2	× 2		× 2	
AA 1.5 V	Saft:	LS 14500		AA 1.2 V
	Tadiran:	SL-760/S		
Y		TL-5903/S, TL-2100/S	•	▼
	Xeno:	XL-060F		

OMP400 / RMP400

Battery type: 1/2 AA Lithium Thionyl Chloride (3.6 V) x 2

Ecocel: EB 1425, EB1426

Saft: LS 14250 C, LS 14250

Sonnenschein: SL-750

Xeno: XL-050F

Dubilier: SB-AA02

Maxell: ER3S

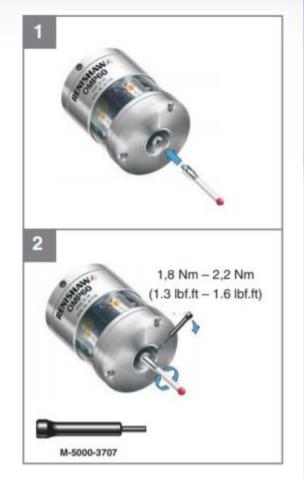
Sanyo: CR 14250 SE

Sonnenschein: SL-350, SL-550

Tadiran: TL-4902 TL-5902, TL-2150, TL-5101

SL-750

Varta: CR 1/2 AA


Productivity Quality Inc. | www.PQIProbing.com

Changing Stylus

- To replace a stylus, simply, unscrew the old / broken stylus (using the Renishaw tool, paperclip, etc.) then, install the new one.
 - These styli have fine threads and probes have sensitive triggers so **do not** overtighten
- With **every** stylus change, you must:
 - Redo your Runout
 - Redo XY & Z calibration
- *PQI supplies a variety of different styli

Basic Troubleshooting

- Probe will not turn on / blinking green-blue when on
 - Change batteries
- Probe beginning to record odd values
 - Recalibrate probe XY & Z
- Probe not repeatable
 - Ensure stylus is not loose
 - Recalibrate probe XY & Z
- Probe blinking Red when not triggered
 - Restart probe
 - Contact PQI
 - Office: 763-249-7149
 - Toll Free: 800-772-0620

